In the following we present examples of new parametric urban design techniques that are applied for large-scale urban developments in order to achieve three goals: inclusiveness and transparency; automatization and speed; flexibility and adaptability.

The modular frameworks described below break down the linear sequence of the design process and give opportunities for changes at any stage during an urban planning process without affecting all the decisions made afterwards. Three presented case-studies are showing that parametric interventions can be made in several phases of the project development that include analysis, design generation and re-evaluation loops.

Research Team:   Kateryna Konieva, Iuliia Osintseva, Ondřej Veselý, Abdulmalik Abdulmawla, Katja Knecht, Dr. Reinhard Koenig, Dr. Sven Schneider

SynCity – Connect the Hubs

Burcu Cimenoglu, Christoph Hanisch, Kateryna Konieva

In response to increasing shortage of resources, infrastructure, housing and job offers in due to rapid urbanization overpopulated Ethiopian cities, there is a proposal to disseminate migrating population to large amount (up to 2000 of new developments) of the so-called “10K towns”.

Generative parametric methods were used optimize and repeat multiple actions that are following similar principles at any site. The tool was eventually applied in three topographically diverse locations in the Ethiopia to test its adaptibility. Creation of the new city “skeleton” would always consist of the street network, main facilities distribution, land use and density schemes, and housing typologies. In most cases these modules would be used in similar sequence and consider the same number of conditions for their design. General input data was defined during the phase of analysis: as locations given with a design brief had no built-up surroundings, only terrain geometry and existing main road were used.

SynCity 2020 – Habeshaville

Iuliia Osintseva, Ondrej Vesely, Mahmoud A’dam

The rapid developement of masterplans for hundreds to thousands of new Ethiopian towns in the short timeframe is beyond the capacities of traditional urban planning frameworks. This project is a result of continued collaboration between Bauhaus-Universität Weimar and EiABC, focused on developement of groundbreaking urban planning tools to help with this process.


In this aproach, an ideal site is chosen from the possible locations by applying various critiria, such as connection to the existing infrastructure or suitable terrain. After that an optimized street network is proposed, based on the terrain morphology to prevent water errosion and avoid steep streets. In towns that are proposed, four housing typologies are used, ranging from the most “urban” mixed use multistorey houses to simpler “farmer” housing with direct access to the agricultural land on the outskirts of the town. The public facitilites and other important buildings are distributed using a set of criteria and rules for their placement, based on our experience from previous field-trips and participative studies we lead in contemporary rural settlements all across Ethiopia.

Tanjong Pagar Waterfront

Kateryna Konieva, Iuliia Osintseva, Ondrej Vesely

Singapore’s Tanjong Pagar container port, an industrial zone of 400 ha, is planned to be relocated to other part of the island, releasing the land for new mixed-use development located in the wider city centre.

In cooperation with ETH Future Cities Lab, parametric generetive toolbox was developed, that could help designers and urban planners explore possible solutions.


 Similar aproach was chosen for the project: to start from the larger scale point of view – by digitally sketching street grids and land use plans and then move towards more detailed aspects such as road setbacks or building morphology. Different rules are set up to handle e.g. building height limits or street widths.

Compared to the projects for Ethiopian rural towns, the parametric methods were in this case used to genarate nd compare mutliple solutions for one very specific context, instead of adapting one solution to multiple locations. The goal was to create several scenarios based on different concepts for how to aproach the site and provide comparative measures on their performance.

Explore the project via our interactive map application.


The research background for Syncity design studio was part of the project Integrated Infrastructure (IN³). It is an interdisciplinary international research project at the Bauhaus-Universität Weimar (BUW) and the Ethiopia Institute for Architecture, Building Construction and City Development (EiABC).  We are also grateful to the Singapore-ETH Centre teams Multi-Scale Energy Systems for Low Carbon Cities, Engaging Mobility, and Big Data-Informed Urban Design and Governance for contributing their knowledge, experience and time to our design studio.

Related Publications

Sorry, but the selected Zotpress account can't be found.

Pin It on Pinterest